Главная » Книги и журналы

1 ... 16 17 18 19 20 21 22 23


3-й ЭТАЖ

Рис.67. Подземные этажи города

мышленные и энергетические объекты и др. Эти объекты должны быть увязаны друг с другом, с наземными сооружениями, причем нельзя забывать и последующие этапы развития. Задача сложная, а с учетом особенностей подземных условий - сложная вдвойне.

Сооружения в городах располагаются на глубинах до сотни метров. Чем ближе к поверхности земли, тем более насыщено подземное пространство различными сооружениями (рис.67). На глубинах до 20--40 м, особенно в центрах крупных городов, создаются многоярусные - 10-12 этажей - подземные комплексы.

Подземная среда - это прежде всего горные породы, грунты (эти термины - синонимы, первый из них употребляют геологи и горняки, второй - строители). Но это также и вода, подземная вода, заполняющая поры и трещины в породах. Поэтому подземные сооружения - это одновременно и подводные сооружения.

Подземные воды ставят проблемы на всех этапах освоения подземного пространства: и при строительстве, и при эксплуатации сооружений.

Для того чтобы разместить под землей сооружение, требуется прежде всего освободить для него



пространство, т.е. произвести выемку грунта. Как и в горном деле, в строителы;тве применяют две системы разработки грунта: открытую и закрытую. Первая из них - это разработка котлованов, траншей и других выемок с поверхности земли. Выемки открыты по всей своей площади. При закрытой системе на поверхность выходят только входные выработки - шахты, тоннели, основная же часть освобождаемого под сооружения пространства располагается под землей и разрабатывается подземным способом.

Заглубляясь ниже уровня подземных вод, выемка, так сказать, вызывает приток воды на себя. Вытекая из грунта в выемку, вода может производить разрушительную работу. Она способна своим гидродинамическим воздействием увлекать с собой грунт, приводя его в плывунное состояние, в результате чего происходит оплывание нижней части откосов и обрушение остальной расположенной выше части. Выходя из дна котлована, вода взвешивает грунт, разрыхляет его и может сделать непригодным в качестве основания сооружения. Она ухудшает и осложняет производство земляных, монтажных и других строительных работ в котловане. На многое еще способна вода.

Поэтому откачка воды непосредственно из котлована (открытый водоотлив) применяется либо в таких случаях, когда некоторые нарушения допустимы (например, в крупных котлованах на свободных территориях можно допустить оплывание откосов в каких-то размерах), либо в таких грунтовых условиях, которые не создают осложнений. Это грунты, устойчивые к воздействию текущей воды: галечники, скальные породы. Но и здесь возникают свои сложности. В скальных породах, например, вода движется в трещинах, которые мо-

гут быть заполнены рыхлым материалом. В результате размыва этого заполнителя сечение трещин увеличивается, приток воды может возрасти и справиться с ним будет трудно. Словом, лучше бы не допускать воду в котлованы.

При закрытой, подземной разработке строительных выработок приток в них воды вызывает еще большие осложнения. Вынос водой грунта при значительном его объеме чреват аварийными последствиями и для самой выработки, и для расположенных над ней, на поверхности земли, сооружений. Вынос грунта в небольших размерах, его подвижки могут привести к деформациям уже готовой части подземного сооружения, например обделки тоннеля. Да и поступление чистой воды в стесненную подземную выработку создает дополнительные трудности в проведении строительных работ. Следовательно, и в подземную выработку, вернее, особенно в подземную выработку лучше бы воду не допускать.

В этом направлении развивалась и продолжает развиваться техника борьбы с подземными водами. Здесь имеются три пути: первый - перехватить, откачать воду за пределами выработки, второй - отжать воду от выработки и третий --поставить воде преграду.

Первый путь это водопониже-ние, искусственное понижение уровня подземных вод. Истоки этого метода идут от колодцев, а затем буровых скважин, из которых издревле добывали воду. При откачке воды уровень ее в скважине или колодце понижается, вызывая приток водЬ! из окружающего водоносного грунта. Уровень воды в грунте также понижается с уклоном в направлении течения, и вокруг скважины образуется депрессионная воронка. Если откачку воды ведут из группы скважин, они взаимодейст-



вуют друг с другом и их депресси-онные воронки объединяются, образуя общую депрессию уровня подземной воды. В этой осушенной зоне (над депрессионной воронкой) и располагается выработка в грунте. Водопонизительные скважины размещают, как правило, по контуру осушаемой выработки, устанавливают в них насосы, объединяют общим трубопроводом для сброса откачиваемой воды и линией электроснабжения. Это уже водопонизи-тельная система. Крупные водопонизительные системы, например на котлованах гидроэлектростанций или на карьерах полезных ископаемых, состоят из десятков, а то и сотен скважин, из которых ведется откачка непрерывно в течение нескольких лет.

Помимо скважин с размещенными в них погружными насосами при водопонижении используют и другие специально созданные для этого технические средства. Прежде всего это хорошо известные строителям и горнякам легкие иглофиль-тровые установки. Иглофильтр - полуторадюймовая труба длиной обычно 6 м с фильтровым звеном длиной 1 м на нижнем конце. С помощью гидроразмыва иглофильтры погружают в грунт на расстоянии 0,75-1,5 м один от другого, присоединяют их (до 100 штук в одном комплекте) к всасывающему трубопроводу, к которому подключен насос, и иглофильтровая установка готова к действию. За счет вакуума, развиваемого насосом, она понижает уровень подземных вод на 4-5 м, иногда немного больше. Если требуется большее понижение уровня, иглофильтровые установки можно размещать последовательно в нескольких ярусах.

И скважины, и иглофильтры справляются со своими задачами в хорошо водопроницаемых, преиму-

щественно песчаных грунтах. Слабопроницаемые грунты (тонкозернистые и глинистые пески, супеси, суглинки) плохо и медленно отдают воду. А осушать их при строительстве особенно необходимо - каждый может себе представить, что такое раскисший глинистый грунт, по которому ни проехать, ни пройти.

Одно из эффективных средств осушения слабопроницаемых грунтов - их вакуумирование. В полости фильтров (в скважинах или иглофильтрах) создают вакуум, распространяющийся на прилегающий к ним грунт. В этом елучае к силе гравитации добавляется атмосферное давление, выжимающее воду из пор грунта в фильтры. Вода может и Остаться в грунте, но она переходит в капиллярное состояние, с давлением ниже атмосферного, обжимая скелет грунта и упрочняя его. Для вакуумирования грунта используют эжекторные иглофильтры и иглофильтровые установки вакуумного водопонижения.

Этот краткий обзор средств водопонижения создает впечатление, что они могут справиться со своей задачей практически в любых гидрогеологических условиях. И это действительно так. Но это не значит, что здесь все в порядке и беспокоиться не о чем. Посмотрим немного внимательнее.

Основные средства водопонижения - вертикальные скважины - ничем не отличаются от скважин, предназначенных для водоснабжения. Но цели этих процессов противоположны. При водоснабжении требуется получить максимум количества воды (дебит) при минимальном понижении уровня подземных вод. При водопонижении, наоборот, требуется понизить уровень при минимальном расходе воды. Лишняя вода - это допОлни-



тельные бесполезные затраты. Для целей водоснабжения скважины стремятся заглубить в наиболее водопроницаемые слои. При водопо-нижении такой подход ведет к лишнему расходу откачиваемой воды. Но заглублять скважины приходится, чтобы обеспечить достаточную площадь входа воды в фильтр. Очевидно, что для водопо-нижения более рационально развивать водоприемники не по вертикали, а по горизонтали, ограничивая их глубину, т.е. переходить от вертикальных скважин к системам горизонтальных фильтров.

Широко распространенные иг-лофильтровые установки с вертикальными фильтрами представляют собой, по существу, горизонтальные дрены, выполненные в виде цепочки часто расположенных коротких фильтровых звеньев. Но длина всех трубопроводов игло-фильтровой установки в 10--12 раз больше длины самой устандвки. Это - следствие вертикального расположения фильтров.

Горизонтальные фильтры нужны для водопонижения не только по соображениям экономики. Часто встречаются гидрогеологические условия, в которых вертикальные водоприемники не могут дать требуемого эффекта осушения грунтов. К ним относятся, в частности, случаи, когда котлован полностью перерезает водоносный пласт и достигает водоупорного слоя (такие выработки называют совершенными). Здесь требуется полный перехват потока подземных вод, а это может быть сделано только горизонтальной дреной, лежащей на водоупоре, в подошве водоносного пласта.

Системы с горизонтальными фильтрами существуют, и предпринимаются усилия для применения их с целью водопонижения. Прежде всего это лучевые водозаборы.

каждый из которых представляет собой шахту с продавленными из нее в грунт по радиальным направлениям горизонтальными трубами-фильтрами. Они обладают большой водозахватной способностью, экономичны в эксплуатации. Но недостатком их являются шахты, сооружение которых плохо увязывается с мобильным характером строительного водопонижения. Для ликвидации этого недостатка создают конструкции малых лучевых колодцев, вертикальным стволом которых должна служить не шахта, а буровая скважина.

Такие конструкции разработаны в ВИОГЕМе в Белгороде (лучевой колодец с буровым автоматом для прокладки фильтров) и в институте Гидроспецпроект в Москве (лучевой колодец и горизонтальные линейные дрены с телескопическими фильтрами). В этих конструкциях применяется буровой принцип прокладки горизонтальных дрен - в первом случае механическое бурение, во втором - гидравлическое, поэтому фильтры могут быть расположены практически на любой необходимой глубине. По принципу прокалываник грунтов - с использованием пневматического пробойника, который, как локомотив, тянет за собой фильтр, - в ПНИИИ-Се (Москва) разработана технология прокладки горизонтальных фильтров.

Существуют и другие принципы прокладки горизонтальных фильтров. В Голландии, например, гибкие пластмассовые фильтры укладывают на дно узкой траншеи, глубиной до 8 м, проходка которой вместе с укладкой фильтра производится многоковшовым экскаватором. Конец фильтра выводится на поверхность и присоединяется к всасывающему патрубку насоса.



Эта система заменяет иглофильтровые установки.

Мы затронули только одну из задач совершенствования техники водопонижения -- задачу перехода от вертикальных водоприемников к горизонтальным. Разумеется, ею не исчерпываются потребности этой области строительной технологии. Ученым и инженерам остается еще обширное поле деятельности.

Второй путь борьбы с водой при подземном строительстве базируется на отжатии воды от выработки. Этот путь, можно считать, уже пройден и является достоянием истории строительства. Речь идет о кессонном способе строительства подземных сооружений. При этом способе устье подземной выработки, например вход в шахту, плотно герметизируется и в выработку нагнетают сжатый воздух. Когда давление его становится равным гидростатическому давлению подземной воды, она перестает течь в выработку и отжимается от нее. Все работы в выработке ведутся при повышенном давлении воздуха. Сообщение с поверхностью - вход и выход - осуществляется через шлюзовой аппарат, обеспечивающий постепенность изменения давления. В противном случае при резком изменении давления, особенно при его снижении (декомпрессии), человеческому организму грозит беда - кессонная болезнь. Вредность работы при повышенном давлении -одна из главных причин отмирания этого способа работ, в последние десятилетия уже почти не применяемого и используемого только в исключительных случаях.

Однако принцип отжатия воды воздухом не отошел в историю, его применяют при работах, не требующих присутствия людей в зоне повышенного давления. С помощью сжатого воздуха интенсифицируют процесс водопонижения: в водонос-

ный пласт, из которого водопонизительные скважины откачивают воду, по другим скважинам нагнетают сжатый воздух, принудительно отжимая воду к водопонизитель-ным скважинам. Это ускоряет процесс осушения слабопроницаемых и плохо отдающих воду грунтов, дает возможность большего понижения уровня подземных вод. В замкнутых участках водоносного пласта (например, ограждаемых противо-фильтационными завесами) сжатым воздухом в комплексе с водо-понижением можно удалить всю воду, полностью осушив грунты. Таким способом обеспечена проходка тоннелей на некоторых участках московского метрополитена.

Третий путь борьбы с подземными водами - поставить воде преграду на пути к выработке. Преграды - это противофильтрационные завесы, разнообразными видами которых располагает арсенал про-тивофильтрационной обороны.

Большой класс составляют завесы инъекционного типа. Принцип их создания: по трассе завесы на необходимую глубину бурят скважины и через них нагнетают растворы, заполняющие пустоты в породе и затвердевающие в них. В разных геологических условиях этот принцип получает разное воплощение и по технологии работ, и по материалам заполнения, и по техническим средствам.

В скальных породах для тампонирования трещин проводят цементацию, т.е. в скважины нагнетают цементные растворы (суспензии). Этот метод имеет уже более чем вековую историю, он широко применяется в гидротехническом строительстве для создания противофильтрационных завес в скальных основаниях плотин, в шахтном строительстве.

Технология цементации имеет ряд особенностей. Цементационные



скважины бурят не сразу на полную глубину, а нисходящими зонами длиной по несколько метров. Каждую зону перед цементацией подвергают гидравлическому опробованию, по результатам которого назначают режим цементации. В понятие режима входят консистенция (густота) раствора, йорядок ее изменения в процессе нагнетания, величина давления и другие параметры. Цементационные скважины подразделяются на очереди по принципу сближения скважин. Эта постепенность сооружения завесы с испытанием водопроницаемости каждой очередной зоны (а это контроль эффекта от предыдущей цементации соседних зон и скважин) обеспечивает получение плотного тела завесы. Но это не значит, что завеса получается совершенно водонепроницаемой. Ее остаточная проницаемость обусловлена главным образом мелкими трещинами в породе, в которые цементный раствор не проникает или распространяется по ним на малое расстояние от скважин. Но крупным же трещи-] нам цементные растворы могут рас-) текаться на десятки, а то и сотни метров, что. приводит к излишним затратам материалов и труда. Последнее обстоятельство является одной из основных причин довольно высокой стоимости метода. Тем не менее цементация является основным методом противофильтрацион-ной защиты в трещиноватых скальных породах.

Помимо цементации в скальных породах применяют (реже) битуминизацию, т.е. нагнетание в породу через скважины горячего расплавленного битума или холодной битумной эмульсии.

Завесы инъекционного типа в рыхлых грунтах до недавнего времени строить не умели: скважины в них неустойчивы, цемент в мел-

кие поры песчаных грунтов не проникает. С 50--60-Х годов начал использоваться новый способ создания глубоких противофильтрацион-ных завес в рыхлых грунтах, разработанный во Франции. Этот способ сложнее цементации скальных пород, и суть его заключается в следующем. В скважину, пробуренную на полную глубину, устанавливают трубу с боковыми отверстиями по всей ее длине. Отверстия перекрыты манжетами - отрезками резиновой трубки, выполняющими роль клапана, позволяющего выходить раствору из трубы. Пространство между трубой с манжетами и стенками скважины заполняют цементно-глинистым раствором, создавая обойму. После схватывания этой обоймы внутрь трубы с манжетами опускают тампон, устанавливают его на уровне отверстий, перекрытых одной манжетой, и нагнетают инъекционный раствор. Последний при определенном давлении отжимает манжету, разрывает обойму и проникает в грунт. Через каждую манжету нагнетают ограниченную (расчетную) порцию раствора.

Успех этой технологии обеспечивается также и применением разнообразной рецептуры растворов: глиноцементных, глинистых, с химическими реагентами. Каждый состав раствора предназначен для уплотнения определенного вида грунта. Технология манжетной инъекции позволяет устанавливать наиболее рациональный порядо! уплотнения грунта, начиная с более проницаемых слоев и кончая слабопроницаемыми.

С!овершенно иной принцип лежит в основе создания мерзлотных завес. Здесь в грунт ничего не вводят, все остается на месте: и грунтовые частицы, и вода в порах между ними. Но воду по трассе



противофильтрационной завесы замораживают и лед преграждает путь потоку подземной воды. Казалось бы, идеальный вариант, никаких материальных затрат, кроме энергии перевода воды из жидкого состояния в твердое. Но именно эти затраты столь значительны, что мерзлотные завесы -- одни из самых дорогостоящих. Вместе с тем этот метод почти независим от геологических условий, он может применяться и в скальных породах, и в песчаных и глинистых грунтах. Именно поэтому его продолжают широко применять в городском подземном строительстве, особенно при строительстве метрополитенов.

i В 60--70-е годы в практику строительства интенсивно входит новый метод, получивший название стена в грунте . Это - метод не только противофильтрационный защиты выработок, но и строительства самих подземных сооружений.

Суть метода проста: в грунте делают глубокую узкую траншею с вертикальными гранями и заполняют ее материалом с нужными свойствами, получая стену в грунте. Главная задача при этом - обеспечение устойчивости граней траншеи при ее выемке и заполнении. Она решается использованием глинистого раствора, заполняющего траншею в течение всего процесса возведения стены.

Бурение скважин с промывкой глинистым раствором, обеспечивающим устойчивость стенок скважин практически в любых породах, известно давно. Давно освоили и бетонирование таких скважин для устройства свай. Но лишь в 50-х годах австрийский инженер К.Федер догадался сдвинуть эти сваи вплотную и построить вместе со специалистами итальянской строительной фирмы ИКОС первую бетоносвай-ную стену в грунте. В дальнейшем

противофильтрационные стены-завесы, состоящие из ряда секущихся (с перекрытием сечения) свай диаметром 600-800 мм, были построены в разных странах, в том числе и в СССР.

Сооружение таких завес производится с помощью ударного бурового станка. Преимущество этой технологии - в возможности сооружать завесы в тяжелых грунтовых условиях, например в галечниках. Но производительность этого способа довольно низкая, а стоимость высокая. Кроме того, стена-завеса имеет много швов, что может отразиться на* качестве завесы. Поэтому естественным был переход, во-первых, от свай к траншеям, а во-вторых, от ударного бурового станка к механизмам с большей производительностью.

Установив на опыте, что глинистый раствор обеспечивает устойчивость не трлько цилиндрических стенок скважин, но и плоских вертикальных граней траншей, разные организации и фирмы во многих странах стали применять для проходки траншей самое разнообразное оборудование: вращательные буровые станки на движущейся вдоль траншеи платформе, одноковшовые и многоковшовые экскаваторы, грейферы - словом, любое имевшееся оборудование, способное извлечь грунт из траншеи. И, наконец, разработали специализированное оборудование для проходки узких глубоких траншей, работающее по принципу либо бурения, либо копания. Одновременно разрабатывались и разные методы заполнения траншей различными материалами - бетоном, глиной, загли-низированным при проходке траншеи грунтом. Пионером этих работ в СССР был трест Гидроспецстрой.

Одновременно с разработкой технологии и средств механизации




Рис.68. Применение стены в грунте при строителы;тве метрополитена мелкого заложения

J - стена в грунте; 2 - уровень подземных вод

был сделан еще один решающий шаг: расширение функционального назначения стен в грунте. Они стали не только противофильтрацион-ными завесами, но и несущими конструкциями - стенами подземных сооружений и фундаментами (рис.68).

В 70-х годах несущие стены в грунте, одновременно выполняющие противофильтрационные функции, по широте использования в городском строительстве обогнали чисто противофильтрационные завесы этого типа.

Все рассказанное выше позволяет получить представление о доста-

точно больших возможностях современной техники, способной преодолеть трудности борьбы с водой при подземном строительстве. Но строительство -- это только начало взаимоотношений с подземными водами, они продолжаются при эксплуатации готовых сооружений.Сюда входят задачи гидроизоляции подземных сооружений, создания и многолетней работы дренажных систем. С этими задачами техника также успешно справляется. Ведь, находясь, например, в метро, мало кто имеет повод задуматься над тем, что он спустился не только под землю, но и под воду.



Глава 5

ВЕНЕЦИЯ,

НИДЕРЛАНДЫ.

ВЕНЕЦИИ

2 декабря 1966 г., менее чем че-. рез месяц после бедствия, Генеральный директор ЮНЕСКО Рене Майо обратился к миру:

От имени ЮНЕСКО я обращаюсь с торжественным воззванием к интеллектуальной и моральной солидарности человечества в интересах спасения и восстановления пострадавших культурных сокровищ Флоренции и Венеции.

Я обращаюсь с призывом к 120 государствам - членам ЮНЕСКО, и прежде всего к их правительствам, великодушно предоставить денежные средства, материалы и другую необходимую помощь, чтобы выполнить огромные по своему объему реставрационные работы...

Я призываю музеи, библиотеки, архивы и научные учреждения всех стран прислать своих специалистов, предоставить свои лаборатории и мастерские в распоряжение соответствующих итальянских учреждений, чьи помещения и коллекции пострадали от бедствия.

Я призываю писателей, художников, музыкантов, критиков, историков - имя им легион, - кто в своем творчестве вдохновлялся флорентийскими и венецианскими сокровищами, пожертвовать часть того, что они почерпнули, - они, как никто другой, знают, что никогда не смогут сполна возместить свой

долг, ибо этот долг духовный, - и помочь нам своим талантом привлечь внимание общественности, тронуть человеческие сердца.

Я призываю миллионы и десятки миллионов людей, пусть всего лишь раз посетивших эти изумительные города и вернувшихся оттуда на всю жизнь духовно обогащенными, прислать в ЮНЕСКО хотя бы один доллар.

И, наконец, я призываю тех, кто никогда не видел Флоренции и Венеции и большинство из которых, вероятно, так и не будет иметь такого счастья, также внести свою скромную лепту: деньгами, трудом, частицей собственного сердца. Ибо невозможно сознавать себя человеком и оставаться безучастным к судьбе величайших сокровищ мировой культуры .

Небывалое наводнение, обрушившееся на Венецию 4 ноября 1966 г., приковало к судьбе этого города внимание всего мира. Это наводнение не трлько причинило большой ущерб городу и его культурным ценностям, оно показало, что город - на грани гибели.

Венеция - достояние не только Италии, она - жемчужина мировой культуры. Более десяти тысяч сооружений и произведений искусства в Венеции представляют исключительную историческую и худо-



жественную ценность. Уникален и неповторим сам город среди лагуны. **Венещ1Я, - писал Гете, - этР мечта, сотканная из воздуха, воды, земли и неба .

Судьба Венеции... Не ждет ли ее участь Атлантиды, не придется ли историкам будущего решать вопрос: Венеция - реальность или миф?

Венеция расположена на островах в середине мелководной лагуны в северо-западном- торце Адриатического моря (рис.69). При первом взгляде на карту Венеции - ее исторического центра - можно увидеть два острова, разделенных Большим !аналом (канал Гранде), и рядом еще один остров - Джу-декка. Эти острова, общим размером примерно 5x3 км, рассечены 180 каналами (рис.70), и считается, что Венеция стоит на 118 островах. С материком Венецию соединяет железнодорожный и автодорожный мост длиной 3,6 км. На материке расположены пригороды Венеции - Местре и Маргера, представляющие собой крупные жилые и про-мышленньЕе зоны. Пригородами считаются и острова в лагуне (Мут рано, Торчелло, Бурано), и застройка песчаной косы, отделяющей лагуну от моря (Лидо, Пелестрина, Сан-Эразмо).

Берега Большого канала и бас; сейна Сан-Марко застроены дворцами. Великолепны Дворец дожей, пятикупольный собор Сан-Марко, ансамбль центральной площади - Пьяцца Сан-Марко и примыкающей к ней Пьяцетты. В городе 378 мостов, среди которых выделяется мост Риальто - первоначальное ядро города . Транспорт города только водный: водные трамвайчики (ва-поретто), катера, гондолы. Нет ни автомобилей, ни лошадей. Последним всадником в Венеции был Наполеон. Улиды узки, по ним едва могут пройти рядом несколько че-

ловек (рис.71). В городе около 400 площадей, но, собственно, этого названия заслуживает только Пьяцца Сан-Марко длиной 175 м и шириной 82 м, выложенная мраморными плитами.

Днем рождения Венеции считают 25 марта 451 г., когда гунны, ведомые Аттилой, вторглись на Апеннинский полуостров, разрушили город и крепость Аквилею, заставив оставшихся в живых искать згбежища на островах лагуны. (За долго до этого на островах и побережье лагуны были поселения венетов -- древнего славянского иллирийского племени, в 42 г. до н.э. подчиненного Римской империи. Недавно аквалангисты обнаружили на дне лагуны у островка Торчелло остатки дамб, относящихся к I в. до н.э. и ограждавших, по-видимому, древнеримское поселение и порт.) После варварских нашествий часть беглецов из Аквилеи, Падуи, Конкордии, Одерцо возвращалась в родные места, другие оседали на ос-тррвах. На островах вырастали дома и хижины на сваях, со стенами из камня, который новоселы привезли на плоскодонных судах вместе со своими пожитками, а также традициями.

(Образовалось 12 поселков, в каждом из которых был избран трибун. Они оказались под властью Византии, которая в 697 г. назначила первого дожа - Паолуччо Анафеста. Центрами были поселения на разных островах: Градо- религиозный центр, Гераклея и затем Маламокко - политический (оба были позднее поглощены морем), Торчелло - торговый. В IX в. политический центр переносится в Риальто (Ривус Альтус, глубокий поток), и город в течение нескольких веков носил это имя. В 829 г. два купца в монашеских одеяниях, Буоно ди Маламокко и Рустико ди



1 ... 16 17 18 19 20 21 22 23
Яндекс.Метрика