Главная » Книги и журналы

1 ... 10 11 12 13 14 15 16 ... 23


Рнс.46. Схема типичного оползня на Южном берегу Крыма

1 - оползневые блоки грунта (делювий); 2 - плоскость скольжения

По предположению Н.И.Кригера и В.В.Севастьянова, здесь происходит оползневый сдвиг прибрежной территории шириной 3 км по лежащим на глубине 20-30 м мэотиче-ским глинам.

Опасный оползень еще с конца XIX в. угрожает большому району Приморского парка в Сочи. Катастрофические подвижки здесь неоднократно наблюдались вблизи санатория им.М.Тореза (ранее - Красная Москва ), Гостеатра, гостиницы Приморская , маяка и других береговых зданий и сооружений. Так, 6 декабря 1933 г. в районе санатория Красная Москва от берега оторвался большой участок земли, который сполз в море и на расстоянии 20 м от берега образовал остров шириной 75 м.

Выше мы довольно просто и однозначно объяснили, как развивается оползневый процесс. Однако это был лишь упрощенный вариант такого развития. В природе все намного сложнее.

Описывая механизм образования оползней, ученые десятилетиями спорят о причинах их возник-

новения. В каждом конкретном случае может действовать большое число факторов, выделить из которых главные, решающие, часто бывает не так-то просто.

Взять хотя бы упоминавшуюся Одессу, классический пример развития гигантского оползня, дискуссия о происхождении которого началась еще в начале XIX в. Подсчитано, что с 1831 г. когда появилась первая статья об одесских оползнях, было предложено не менее 10 самых разных гипотез, пытающихся объяснить причины происходящего здесь оползнеобразова-ния. То же самое относится и к оползням Южного берега Крыма, при изучении которых рассматривается множество гидрологических, климатических, геолого-тектонических и других факторов.

Первая, широко признанная точка зрения, сохраняющая свои позиции чуть ли не с 30-х годов XIX в., главную роль в нарушении устойчивости береговых склонов отводит подземным водам. Именно вследствие их действия, например, в Одессе мэотические глины, на ко-



торых сверху лежит толща одесского известняка-ракушечника, смачиваются, размокают и переходят в вязко-пластическое состояние. В этих глинах геологи нашли целую систему криволинейных плоскостей (так называемых зеркал) скольжения и трещин; их направление показывает явное наличие сдвига горных пород в сторону моря.

То же самое относится к сильно перемятым или трещиноватым майкопским глинам в Эшерском районе Абхазии (северо-западнее Сухуми). При увлажнении их поверхность скольжения превращается в настоящий каток , по которому сползают верхние слои земли. Об этом свидетельствуют результаты бурения скважин с отбором образцов грунта - всюду в майкопских глинах обнаруживаются нарушения слоистости и зеркала скольжения, наклоненные на 10-20 ° от горизонтали.

Еще удивительнее ведут себя при увлажнении и подвижках скальные горные породы аргиллиты, широко распространенные в основаниях оползневых массивов Южного берега Крыма. Хотя они обычно бывают сильно выветренными и трещиноватыми, но на первый взгляд, и особенно нао-щупь, кажутся твердыми и прочными. А вот когда они насыщаются водой, да еще при подвижках перетираются и дробятся, то составляющие их аргиллитовые чешуйки превращаются в ползучую вязко-пластическую глинистую пасту. По ней, как по маслу, начинают скользить лежащие выше слои горных пород. Сначала образуются отдельные криволинейные поверхности скольжения, потом они укрупняются, объединяются и, наконец, П1ЮИСХОДИТ катастрофическая подвижка, и весь оползневый склон берега сползает в море.

То, что катастрофические подвижки береговых склонов связаны с климатическими факторами, показывает пример Чукурларского и Желтышевского оползней в районе г.Ялты. Они произошли в богатый осадками зимне-весенний период и каждому из них предшествовали сильные и продолжительные дожди.

С инфильтрацией атмосферных осадков непосредственно связана влажность грунтов - основной показатель их вязко-пластического состояния, приводящего к оползне-образованию. Например, майкопские глины побережья Абхазии в зимне-весенний сезон повышают свою влажность с 25-27 % в конце лета до 35-50 % весной.

Вторая, принципиально противоположная гипотеза оползнеобра-зования в своем крайнем выражении отвергает значение подземной и поверхностной воды на суше и отдает приоритет ... воде морской. Здесь главным считается агрессия моря, бросающего в атаку на берег мириады разрушительных волн. В результате подмыва нижнего поддерживающего уступа оползневый склон теряет подпорку, равновесие его нарушается, он падает и скользит в сторону моря.

Сила удара волн о берег может достигать огромной величины, изг меряемой десятками тонн на каждый квадратный метр берега. Эта сила бывает разной в различных местах и в разное время, но всегда она зависит от длины так называемого разгона волны, т.е. от пути, который волна проходит до встречи с берегом.

Береговая линия Крымского полуострова сильно изрезана, побережье во многих местах испещрено многочисленными бухтами, которые в какой-то степени гасят энергию штормовых воли. Вблизи Чер-



номорского побережья Кавказа море более бурное. Здесь берег почти полностью открыт для штормов. Преобладающие западные ветры создают наибольший для Черноморья разгон волны, и высота прибоя достигает 6-8 м.

Доказательства того, что катастрофическая подвижка оползневого склона часто следует за подмывом берега, приводит Одесская оползневая станция. Например, в сентябре 1962 г. на территории санатория им.Чкалова в результате потери устойчивости берегового склона в грунте образовалась оползневая трещина, после возникновения которой скорость развития оползня резко увеличилась. Более чем через год, а именно в ночь с 13 на 14 октября 1963 г., произошла катастрофическая подвижка: от берега отделился и опустился вниз большой массив грунта длиной 420 м и шириной 35 м. Одна часть его передвинулась на 6 м в горизонтальном направлении в сторону моря, другая повернулась и наклонилась, составив угол в 4-10 ° от горизонтальной плоскости.

Наблюдения за катастрофическими подвижками уже упоминавшихся Чукурларского и Желты-шевского оползней в зимне-весенний сезон 1907, 1924, 1940 и 1961 гг. показывают, что они произошли не только из-за сильных дождей, но и в результате интенсивных штормов на море, сила которых достигала 4-6 баллов.

Пример вечности абразионного П1юцесса дают не только геологические исследования, но и археологические.

В 1973 г. научный сотрудник Феодосийского музея А.Айбабин провел в Коктебельском заливе на Восточном берегу Крыма подводные археологические работы. Со дна моря с глубины 3-5 м на расстоянии

до 300 м от берега было поднято большое количество остродонных амфор, в которых древние купцы привозили в Крым вино и масло. Как попали они на дно бухты?

Первое приходящее в голову объяснение - это то, что найденная посуда находилась на затонувших кораблях или что сосуды были уронены в море при^ разгрузке судов в порту. Эта версия была полностью опровергнута, когда при раскопках Хазарского городища VIII-IX вв. на береговом холме Тепсень были обнаружены точно *такие же амфоры, как и на дне моря. Это могло означать только одно: морской прибой в течение столетий размывал берег, среди пластов которого находился средневековый культурный слой, волна уносила и разбрасывала по дну залива нынешние находки археологов. И сегодня этот процесс упорно продолжается (рис.47). После шторма на пляже нередко можно обнаружить черепки древних амфор.

Третьей причиной оползнеобра-зования, против которой почти никто не возражает, а ряд ученых даже отдают ей предпочтение перед другими, является сейсмичность. Действительно, например, территория Южного берега Крыма подвержена довольно частым, хотя и небольшим землетрясениям интенсив-нос^ю 2-4 балла (изредка бывают и сильные землетрясения, сила которых достигает 8 баллов). Подземные толчки способствуют разрушению горных пород, образованию новых трещин, нарушению плотности массивов грунта. В результате землетрясений происходит вибрационное разжижение даже совершенно сухого грунта.

Это явление широко известно: твердые частицы при динамическом воздействии ртделяются друг от друга и как бы всплывают . Ее-





Рис.47. Оползни на берегз Коктебельской бухты

4 ¥ь**

ли такая разжиженная масса наклонена, она начинает течь, а по ней скользят лежащие выше слои горных пород. Например, считают, что оползни в районе Алупки - Симеиза происходят именно в связи с действием землетрясений. Отобранные там образцы тонкочешуйчатых аргиллитов, залегающих в основании оползневых склонов, были исследованы в лабораторных вибрационных приборах. В результате установлено, что прочность этих горных пород при вибрации снижается в 2-2,5 раза, и они мгновенью приобретают текучее состояние. При прекращении вибрации грунты восстанавливают свою прочность, но занимают уже новое положение. Серия следующих друг за другом, хотя бы и с передышкой , сейсмических воздействий на оползневые склоны может приводить к ступенчатым периодическим смещениям грунтовых массивов относительно друг друга. В конечном счете это ведет к общей потере их устойчивости, т.е. к катастрофическим подвижкам, оползням.

Ряд ученых возражают против представления о пластическом характере деформаций подстилаю-

щих глин и считают, что оползневые смещения происходят по поверхности скольжения, образующейся при хрупком их разрушении по трещинам.

Вредное влияние на оползневые районы прибрежных городов оказывает не только природа со своими морскими прибоями и разливами рек, но и сами города. На первый взгляд это кажется парадоксальным, но факт остается фактом. Возводя здания, портовые, складские, доковые сооружения, корпуса заводских цехов, люди перегружают береговые склоны, создают дополнительное давление на грунт. Застройка береговой территории сильно задерживает сток дождевых и талых вод. Если до строительства зданий и сооружений поверхностные потоки свободно уходили в море, то теперь они остаются на суше, впитываются в почву и разрушают грунт. Кроме этого, нередко

(особенно в прошлом) неразумный подрыв береговых откосов, расширение пляжей, рытье траншей, рвов, канав снижает устойчивость склонов, делает их подвижными. Все это усиливает процесс оползне-



образования и может привести к катастрофе.

Влияние подрывной (в буквальном смысле слова) деятельности человека можно проследить на примере трех оползней, расположенных на водоразделе рек Шицк-вара и Мазиквара, северо-западнее Сухуми. Эти оползни проявили себя в 1947-1948 гг., когда выемки строившейся в то время автодороги подсекли слои грунта, которые и так были наклонены в сторону моря на 18-20 °. Ослабление оползневого склона привело к крупным подвижкам грунтовых массивов, одна из которых, например, составила 31-33 мм. При этом развился оползень длиной 210 м, шириной 60 м и глубиной 7-9 м.

В пределах Чукурларского и Желтышевского оползней в Ялте катастрофические подвижки неоднократно происходили в результате хищнического вывоза с пляжей гальки для строительства. Следствием этого, так же как при подмыве берега волнами, было ослабление опорных массивов, на которые до поры до времени опирались склонные к оползанию грунты. Здесь же отмечено влияние на развитие катастрофических подвижек оползневых склонов строительства различных зданий и сооружений, нарушающих равновесие массива.

Современная наука в отличие от прошлых времен считает необходимым комплексно учитывать все факторы оползнеобразования. Действительно, накопленные материалы многолетних исследований оползней в разных прибрежных районах Причерноморья (да и не только его) показывают, что подмыв берега морскими волнами, обводнение массивов грунта подземными водами, сейсмичность, деятельность человека влияют на оползнеобразование почти в одинаковой степени. Недоучет любого из

них может привести к серьезным ошибкам.

Вместе с тем в каждом конкретном случае для выбора очередности противооползневых мероприятий необходимо знать, какой фактор влияет на развитие оползней в первую очередь, а какой проявляет себя позже. От этого зависит, нужно ли, например, срочно организовать отвод поверхностных и подземных вод или же начать с укрепления берега.

Отвод дождевых и подземных вод, пожалуй, одно из самых ранних мероприятий, которое было придумано человеком. Мы встречаем описание водосточных канав еще у римского архитектора I в. до н.э. Витрувия. Археологи нашли следы дождевой канализации в развалинах затонувшего Себастопо-лиса, Эпидавра, Херсонеса и других поселений. Древние дренажные прорези обнаружены на оползневых склонах Южного берега Крыма, на Керченском полуострове и во многих других районах древнегреческой колонизации. Эффективная конструкция деревянного ряжевого дренажа применена в XIV в. для противооползневых сооружений города Великие Булгары (рис.48, 49). Перехватывая поток грунтовых вод, дренаж защищает крутой берег р.Меленки от обрушения.

Большое число водосборных и водоотводных галерей и штолен, построенных еще в XIX в., находятся под Ялтой, в Одессе и других местах Причерноморья. Многие из них успешно выполняют свою задачу и поныне.

В наше время перехват и организованное отведение дождевых и талых вод, текущих по крутой поверхности земли на причерноморской территории, осуществляется устройством сложной разветвленной системы канав и лотков -- до-




КАМСКОЕ УСТЬЕ

ПВЕЛИКИЕ ТЕТЮШИ 0 БУЛГАРЫ

УЛЬЯНОВСК


Рис.48. Главный город волжской Булгарии Великие Булгары

а - географическое местоположение города; б - памятники архитектуры на территории города; 1 - ханская усыпальница; 2 - башня (ма;ый минарет); 3 - противооползневые дренажные ряжевые конструкции; 4 - Черная палата; 5 - Белая палата; 6 - монастырский погреб; 7 - мавзолей; 8 - остатки соборной мечети; 9 - Бабий бугор; 10 Каптелев бугор; 11 - земляной вал со рвом


Рнс.49. Ряжевые конструкции дренажа противооползневых сооружений Великих Булгар




Остатки укреплений Месембрии (ныне Несебр, Болгария), основанной древнегреческими колонистами

Наводнение в старой Москве (см. след. разворот)








Венс1щя. Большой канал

Парадный вид Венеции со стороны лагуны

Прием французского посла в Венеции, 1740 г. (Каналетто. Государственный Эрмитаж, Ленинград) (см. след. разворот)




РД1 i i 1С. ,




1 ... 10 11 12 13 14 15 16 ... 23
Яндекс.Метрика